Wrist-wearable data may help identify pain, sleep, and anxiety outcomes after traumatic stress exposure

Scientists from UCSF and the San Francisco VA Medical Center, working in partnership with a national collaboration among researchers led by the University of North Carolina, conducted the largest prospective study of its kind indicating 24-hour rest-activity characteristics from wrist wearable devices predicted adverse symptom outcomes in the 8 weeks after traumatic stress exposure.

A new study shows how wrist-activity biomarkers could have utility as screening tools for adverse symptom outcomes after trauma exposure.

Scientists from the San Francisco VA Medical Center and UC San Francisco, involving a national collaboration among researchers led by the University of North Carolina, conducted the largest prospective study of its kind indicating 24-hour rest-activity characteristics from wrist wearable devices predicted adverse symptom outcomes in the 8 weeks after traumatic stress exposure.

In a diverse group of individuals, variability in 24-hour activity based on wrist accelerometry was associated with greater pain severity. During the 8 weeks after trauma, changes in several rest-activity measures were also associated with changes in pain, sleep, and anxiety in this group of patients. Additionally, simple thresholds for these biomarkers identified individuals with good recovery for pain, sleep, and anxiety with high predictive value.

Wrist wearables with accelerometry are easy to wear and commonly used among consumers, and this research, published in JAMA Psychiatry on January 11, 2023, suggests that 24-hour rest-activity characteristics obtained from these devices might identify those who will recover from trauma in high-risk populations.

“These findings are important both to identify specific individuals who are vulnerable to pain and mental health problems after trauma, and to test potential treatments focused on reducing these problems for individuals who have recently experienced traumatic events,” said lead author Laura Straus, PhD, an assistant adjunct professor in the UCSF Department of Psychiatry and Behavioral Sciences and a staff research psychologist at the San Francisco VA Medical Center.

Exploring potential biomarkers for long-term difficulties following trauma exposure

This research is part of the national Advancing Understanding of RecOvery afteR traumA (AURORA) Study, a multi-institution project funded by the National Institutes of Health, non-profit funding organizations such as One Mind, and partnerships with leading tech companies. The organizing principal investigator is Samuel McLean, MD, MPH, professor of psychiatry and emergency medicine at the University of North Carolina School of Medicine and director of the UNC Institute for Trauma Recovery.

AURORA allows researchers to leverage data from patient participants who enter emergency departments at hospitals across the country after experiencing trauma, such as car accidents or other serious incidents. The ultimate goal of AURORA is to spur on the development and testing of preventive treatment and interventions for individuals who have experienced traumatic events.

AURORA scientists have known that only a subset of trauma survivors develop long-term pain and mental health difficulties, and that this is especially true in individuals from socioeconomically disadvantaged backgrounds. No objective assessment methods or biomarkers are available to determine who will recover from trauma versus who will develop long-term symptoms.

To examine the question if any candidate biomarkers could be identified based on wrist-wearable data, participants wore a study watch for 8 weeks, beginning in the emergency department, and completed periodic smartphone-based assessments of neuropsychiatric symptoms. Straus and her colleagues derived and validated rest-activity characteristics that were associated with specific self-report symptom domains at a point in time, and changes in symptom severity over time.

“We found that several rest-activity measures were associated with changes in pain over time. We also found that objective sleep/wake fragmentation was associated with changes in pain, self-reported sleep problems, and anxiety,” said Thomas Neylan, MD, a senior author on the paper and professor of psychiatry at UCSF. “These findings highlight a potential use for wrist-wearables in identifying who may need further evaluation and support after a trauma.”

“These latest findings are very exciting because they suggest objective biomarkers from wearable devices could be used as screening tools to help patients and physicians identify whether symptoms are improving or worsening post-trauma,” said McLean, a senior author on the paper. “Studies focusing on the early aftermath of trauma are critical because we need a better understanding of how adverse symptoms develop so we can prevent and treat them.”

Prediction tools, presentations, and publications resulting from AURORA studies are available on the project website.

Research and clinical staff at the following institutions were critical in the care of patients and for this research study: Albert Einstein Healthcare, Baystate Medical Center, Beth Israel Deaconess Medical Center, Boston Medical Center, Brigham and Women's Hospital, Cooper Health Institute, Emory University, Henry Ford Health System, Indiana University, Massachusetts General Hospital, Rhode Island Hospital, The Miriam Hospital, St. Joseph Hospital, Temple University, Thomas Jefferson University, University of Massachusetts Chan Medical School, University of Alabama at Birmingham, University of Cincinnati, University of Florida College of Medicine–Jacksonville, University of Pennsylvania, Vanderbilt University, Washington University in St. Louis, Wayne State University, Ascension St. John Hospital, Wayne State University, Detroit Receiving Hospital, William Beaumont Hospital, Wayne State University, McLean Hospital, University of Missouri-St. Louis, UNC Medical Center, UNC School of Medicine, University of California San Francisco, Northern California Institute for Research and Education, Harvard University Medical School, and Harvard University School of Public Health.

Read the study


About UCSF Psychiatry and Behavioral Sciences

The UCSF Department of Psychiatry and Behavioral Sciences and the Langley Porter Psychiatric Institute are among the nation's foremost resources in the fields of child, adolescent, adult, and geriatric mental health. Together they constitute one of the largest departments in the UCSF School of Medicine and the UCSF Weill Institute for Neurosciences, with a mission focused on research (basic, translational, clinical), teaching, patient care, and public service.

UCSF Psychiatry and Behavioral Sciences conducts its clinical, educational, and research efforts at a variety of locations in Northern California, including the UCSF Nancy Friend Pritzker Psychiatry BuildingUCSF Langley Porter Psychiatric Hospital; UCSF Medical Centers at Parnassus Heights, Mission Bay, and Mount Zion; UCSF Benioff Children’s Hospitals in San Francisco and Oakland; Zuckerberg San Francisco General Hospital and Trauma Center; the San Francisco VA Health Care System; UCSF Fresno; and numerous community-based sites around the San Francisco Bay Area.

About the UCSF Weill Institute for Neurosciences

The UCSF Weill Institute for Neurosciences, established by the extraordinary generosity of Joan and Sanford I. "Sandy" Weill, brings together world-class researchers with top-ranked physicians to solve some of the most complex challenges in the human brain.

The UCSF Weill Institute leverages UCSF’s unrivaled bench-to-bedside excellence in the neurosciences. It unites three UCSF departments—Psychiatry and Behavioral Sciences, Neurology, and Neurological Surgery—that are highly esteemed for both patient care and research, as well as the Neuroscience Graduate Program, a cross-disciplinary alliance of nearly 100 UCSF faculty members from 15 basic-science departments, as well as the UCSF Institute for Neurodegenerative Diseases, a multidisciplinary research center focused on finding effective treatments for Alzheimer’s disease, frontotemporal dementia, Parkinson’s disease, and other neurodegenerative disorders.

About UCSF

The University of California, San Francisco (UCSF) is exclusively focused on the health sciences and is dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care. UCSF Health, which serves as UCSF’s primary academic medical center, includes top-ranked specialty hospitals and other clinical programs, and has affiliations throughout the Bay Area.